Affiliation:
1. Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA
Abstract
Study of boulder transport by tsunamis is challenging because boulder size, shape, and composition vary greatly; furthermore, flow conditions, topography, and initial conditions are generally unknown. To investigate the mechanism of boulder pickup, experiments of tsunami-like flow past spherical boulders partially buried in a sediment bed are conducted. The experiments are performed in a large centrifuge facility to reduce scale effects and the corresponding dynamic similitude is discussed. The traditional approach to determine boulder pickup is adapted for the case of a half-buried spherical boulder. The adapted model predicts that the boulders are transported, but does not accurately predict the timing of pick up. To investigate the difference in pickup timing, two physical phenomena are discussed: pore-water-pressure dissipation in the soil, and the impact of the free-surface flow on hydrodynamic forces. For a spherical shaped boulder, vertical forces (i.e. buoyant and lift forces) are critical for the initiation of boulder pickup. It was found that spherical boulders that are three-quarter buried in the soil are not transported, even when exposed to flow conditions that would otherwise predict transport.
Funder
the National Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献