Affiliation:
1. Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
Abstract
We review the construction of the Dirac operator and its properties in Riemannian geometry, and show how the asymptotic expansion of the trace of the heat kernel determines the spectral invariants of the Dirac operator and its index. We also point out that the Einstein–Hilbert functional can be obtained as a linear combination of the first two spectral invariants of the Dirac operator. Next, we report on our previous attempts to generalize the notion of the Dirac operator to the case of Matrix Geometry, where, instead of a Riemannian metric there is a matrix valued self-adjoint symmetric two-tensor that plays a role of a "non-commutative" metric. We construct invariant first-order and second-order self-adjoint elliptic partial differential operators, which can be called "non-commutative" Dirac operators and non-commutative Laplace operators. We construct the corresponding heat kernel for the non-commutative Laplace type operator and compute its first two spectral invariants. A linear combination of these two spectral invariants gives a functional that can be considered as a non-commutative generalization of the Einstein–Hilbert action.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献