Laue’s theorem revisited: Energy–momentum tensors, symmetries, and the habitat of globally conserved quantities

Author:

Giulini Domenico1ORCID

Affiliation:

1. Institute for Theoretical Physics and Riemann Center for Geometry and Physics, Leibniz University of Hannover, Appelstrasse 2, 30167 Hannover, Germany

Abstract

The energy–momentum tensor for a particular matter component summarises its local energy–momentum distribution in terms of densities and current densities. We re-investigate under what conditions these local distributions can be integrated to meaningful global quantities. This leads us directly to a classic theorem by Max von Laue concerning integrals of components of the energy–momentum tensor, whose statement and proof we recall. In the first half of this paper, we do this within the realm of Special Relativity (SR) and in the traditional mathematical language using components with respect to affine charts, thereby focusing on the intended physical content and interpretation. In the second half, we show how to do all this in a proper differential-geometric fashion and on arbitrary spacetime manifolds, this time focusing on the group-theoretic and geometric hypotheses underlying these results. Based on this we give a proper geometric statement and proof of Laue’s theorem, which is shown to generalise from Minkowski space (which has the maximal number of isometries) to spacetimes with significantly less symmetries. This result, which seems to be new, not only generalizes but also clarifies the geometric content and hypotheses of Laue’s theorem. A series of three appendices lists our conventions and notation and summarises some of the conceptual and mathematical background needed in the main text.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3