GEOMETRIC QUANTIZATION OF HAMILTONIAN ACTIONS OF LIE ALGEBROIDS AND LIE GROUPOIDS

Author:

BOS ROGIER1

Affiliation:

1. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, The Netherlands

Abstract

We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose, we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this setting. We proceed by defining a Marsden–Weinstein quotient for our setting and prove a "quantization commutes with reduction" theorem. We explain how our geometric quantization procedure relates to a possible orbit method for Lie groupoids. Our theory encompasses the geometric quantization of symplectic manifolds, Hamiltonian Lie algebra actions, actions of bundles of Lie groups, and foliations, as well as some general constructions from differential geometry.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Reference31 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian Lie algebroids;Memoirs of the American Mathematical Society;2024-03

2. Linking Lie groupoid representations and representations of infinite-dimensional Lie groups;Annals of Global Analysis and Geometry;2019-01-29

3. GEOMETRIC REALIZATIONS OF KAEHLER AND OF PARA-KAEHLER CURVATURE MODELS;International Journal of Geometric Methods in Modern Physics;2010-05

4. Quantisation commutes with reduction at discrete series representations of semisimple groups;Advances in Mathematics;2009-10

5. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review;Symmetry, Integrability and Geometry: Methods and Applications;2009-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3