Affiliation:
1. Dipartimento di Matematica e Informatica "U. Dini", Università degli Studi di Firenze, Via S. Marta 3, I-50139 Firenze, Italy
Abstract
We give an introduction to (pseudo-)Finsler geometry and its connections. For most results we provide short and self-contained proofs. Our study of the Berwald nonlinear connection is framed into the theory of connections over general fibered spaces pioneered by Mangiarotti, Modugno and other scholars. The main identities for the linear Finsler connection are presented in the general case, and then specialized to some notable cases like Berwald's, Cartan's or Chern–Rund's. In this way it becomes easy to compare them and see the advantages of one connection over the other. Since we introduce two soldering forms we are able to characterize the notable Finsler connections in terms of their torsion properties. As an application, the curvature symmetries implied by the compatibility with a metric suggest that in Finslerian generalizations of general relativity the mean Cartan torsion vanishes. This observation allows us to obtain dynamical equations which imply a satisfactory conservation law. The work ends with a discussion of yet another Finsler connection which has some advantages over Cartan's and Chern–Rund's.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献