Anisotropic stellar compact spheres in f(R) gravity via Karmarkar approach

Author:

Abbas G.1ORCID,Nazar H.1,Qaisar S.2,Güdekli Ertan3

Affiliation:

1. Department Mathematics, The Islamia University of Bahawalpur, Pakistan

2. Department Mathematics, COMSATS University Islamabad, Sahiwal Campus, Sahiwal-57000, Pakistan

3. Department of Physics, Istanbul University, Istanbul, Turkey

Abstract

This paper investigates the new interior solution of stellar compact spheres in the framework of metric [Formula: see text] gravity. In this connection, we derived the Einstein field equations for static anisotropic spherically symmetric spacetime in the mechanism of Karmakar condition. The obtained results of the field equations have been studied with well-known Starobinskian model [Formula: see text] by using three different compact stars like RXJ1856-37, [Formula: see text]-[Formula: see text], [Formula: see text]-[Formula: see text]. Moreover, the constants involved in the solution of metric potentials have been determined through smooth matching conditions between the interior geometry and exterior spacetime. Thereafter, the physical significance of the obtained results is examined in the form of fluid variables, equation of state (EoS) parameters, energy conditions, anisotropic stress and stability analysis by using the graphical plot. The approximated values of the constants and the mass-radius relation have been calculated through different stellar star objects ([Formula: see text]-[Formula: see text] ([Formula: see text]), [Formula: see text]-[Formula: see text] ([Formula: see text]) and [Formula: see text]-[Formula: see text] ([Formula: see text])) shown in Table 1. Finally, we have concluded that our considered compact stellar objects with particular choice of [Formula: see text] model in the mechanism of Karmakar condition satisfies all the necessary bounds for potentially stable formation of the stars.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3