Affiliation:
1. Faculty of Mathematics and Informatics, Plovdiv University, 236 Bulgaria Blvd., Plovdiv, 4003, Bulgaria
Abstract
A Riemannian manifold M with an integrable almost product structure P is called a Riemannian product manifold. Our investigations are on the manifolds (M, P, g) of the largest class of Riemannian product manifolds, which is closed with respect to the group of conformal transformations of the metric g. This class is an analogue of the class of locally conformal Kähler manifolds in almost Hermitian geometry. In the present paper we study a natural connection D on (M, P, g) (i.e. DP = Dg = 0). We find necessary and sufficient conditions, the curvature tensor of D to have properties similar to the Kähler tensor in Hermitian geometry. We pay attention to the case when D has a parallel torsion. We establish that the Weyl tensors for the connection D and the Levi-Civita connection coincide as well as the invariance of the curvature tensor of D with respect to the usual conformal transformation. We consider the case when D is a flat connection. We construct an example of the considered manifold by a Lie group where D is a flat connection with non-parallel torsion.
Publisher
World Scientific Pub Co Pte Lt
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献