ON COSMOLOGICAL-TYPE SOLUTIONS IN MULTI-DIMENSIONAL MODEL WITH GAUSS–BONNET TERM

Author:

IVASHCHUK V. D.12

Affiliation:

1. Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya ul., Moscow 119361, Russia

2. Institute of Gravitation and Cosmology, Peoples' Friendship, University of Russia, 6 Miklukho-Maklaya ul., Moscow 117198, Russia

Abstract

A (n + 1)-dimensional Einstein–Gauss–Bonnet (EGB) model is considered. For diagonal cosmological-type metrics, the equations of motion are reduced to a set of Lagrange equations. The effective Lagrangian contains two "minisuperspace" metrics on ℝn. The first one is the well-known 2-metric of pseudo-Euclidean signature and the second one is the Finslerian 4-metric that is proportional to n-dimensional Berwald–Moor 4-metric. When a "synchronous-like" time gauge is considered, the equations of motion are reduced to an autonomous system of first-order differential equations. For the case of the "pure" Gauss–Bonnet model, two exact solutions with power-law and exponential dependence of scale factors (with respect to "synchronous-like" variable) are obtained. (In the cosmological case, the power-law solution was considered earlier in papers of N. Deruelle, A. Toporensky, P. Tretyakov and S. Pavluchenko.) A generalization of the effective Lagrangian to the Lowelock case is conjectured. This hypothesis implies existence of exact solutions with power-law and exponential dependence of scale factors for the "pure" Lowelock model of mth order.

Publisher

World Scientific Pub Co Pte Lt

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3