SCENARIOS FOR THE DEPLOYMENT OF CARBON CAPTURE AND STORAGE IN THE POWER SECTOR IN A PORTFOLIO OF MITIGATION OPTIONS

Author:

MORRIS JENNIFER1ORCID,KHESHGI HAROON2,PALTSEV SERGEY1,HERZOG HOWARD1

Affiliation:

1. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA

2. ExxonMobil Research and Engineering Company, 1545 Route 22 East, Annandale NJ 08801, USA

Abstract

Using the MIT Economic Projection and Policy Analysis (EPPA) model, we explore factors influencing carbon capture and storage (CCS) deployment in power generation and its role in mitigating carbon emissions. We find that in the 2C scenario with EPPA’s base-case technology cost and performance assumptions, CCS plays an important role in the second half of the century: by 2100 CCS is applied to almost 40% of world electricity production, with a third coming from coal with CCS and the other two-thirds from gas with CCS. Results on CCS deployment depend on the assumed fraction of carbon captured in CCS power plants, as emissions constraints get tighter and the carbon price rises. Adding options for higher capture fractions or offsetting uncaptured emissions leads to greater deployment of CCS than in the 2C base case. We provide a sensitivity analysis by making favorable assumptions for CCS, nuclear and renewables. We also explore regional differences in the deployment of CCS. We find that US and Europe mostly rely on gas CCS, whereas China relies on coal CCS and India pursues both options. We also assess how these projections align with assessment of CO2 storage potential, and find that storage potential is larger than storage demand at both global and regional scales. Ultimately, we find that under stringent mitigation scenarios, the power sector relies on a mix of technological options, and the conditions that favor a particular mix of technologies differ by region.

Funder

ExxonMobil Research and Engineering Company

Publisher

World Scientific Pub Co Pte Lt

Subject

Management, Monitoring, Policy and Law,Economics and Econometrics,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3