Prediction of diabetes and hypertension using multi-layer perceptron neural networks

Author:

Bani-Salameh Hani1ORCID,Alkhatib Shadi M.1,Abdalla Moawyiah1,Al-Hami Mo’taz2,Banat Ruaa1,Zyod Hala1,Alkhatib Ahed J.3

Affiliation:

1. Department of Software Engineering, The Hashemite University, Zarqa, Jordan

2. Department of Computer Information System, The Hashemite University, Zarqa, Jordan

3. Department of Legal Medicine, School of Medicine, JUST, Jordan

Abstract

Background: Diabetes and hypertension are two of the commonest diseases in the world. As they unfavorably affect people of different age groups, they have become a cause of concern and must be predicted and diagnosed well in advance. Objective: This research aims to determine the effectiveness of artificial neural networks (ANNs) in predicting diabetes and blood pressure diseases and to point out the factors which have a high impact on these diseases. Sample: This work used two online datasets which consist of data collected from 768 individuals. We applied neural network algorithms to predict if the individuals have those two diseases based on some factors. Diabetes prediction is based on five factors: age, weight, fat-ratio, glucose, and insulin, while blood pressure prediction is based on six factors: age, weight, fat-ratio, blood pressure, alcohol, and smoking. Method: A model based on the Multi-Layer Perceptron Neural Network (MLP) was implemented. The inputs of the network were the factors for each disease, while the output was the prediction of the disease’s occurrence. The model performance was compared with other classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). We used performance metrics measures to assess the accuracy and performance of MLP. Also, a tool was implemented to help diagnose the diseases and to understand the results. Result: The model predicted the two diseases with correct classification rate (CCR) of 77.6% for diabetes and 68.7% for hypertension. The results indicate that MLP correctly predicts the probability of being diseased or not, and the performance can be significantly increased compared with both SVM and KNN. This shows MLPs effectiveness in early disease prediction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3