Blockchain with deep learning-enabled secure healthcare data transmission and diagnostic model

Author:

Neelakandan S.1,Beulah J. Rene2,Prathiba L.3,Murthy G. L. N.4,Irudaya Raj E. Fantin5,Arulkumar N.6

Affiliation:

1. Department of CSE, R.M.K Engineering College, Chennai, India

2. Department of CSE, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai, India

3. MIT Art Design and Technology University, Pune, India

4. Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, India

5. Department of EEE, Dr. Sivanthi Aditanar College of Engineering, Tamilnadu, India

6. Department of CS, CHRIST (Deemed to be University), Bangalore, India

Abstract

At these times, internet of things (IoT) technologies have become ubiquitous in the healthcare sector. Because of the increasing needs of IoT, massive quantity of patient data is being gathered and is utilized for diagnostic purposes. The recent developments of artificial intelligence (AI) and deep learning (DL) models are commonly employed to accurately identify the diseases in real-time scenarios. Despite the benefits, security, energy constraining, insufficient training data are the major issues which need to be resolved in the IoT enabled medical field. To accomplish the security, blockchain technology is recently developed which is a decentralized architecture that is widely utilized. With this motivation, this paper introduces a new blockchain with DL enabled secure medical data transmission and diagnosis (BDL-SMDTD) model. The goal of the BDL-SMDTD model is to securely transmit the medical images and diagnose the disease with maximum detection rate. The BDL-SMDTD model incorporates different stages of operations such as image acquisition, encryption, blockchain, and diagnostic process. Primarily, moth flame optimization (MFO) with elliptic curve cryptography (ECC), called MFO-ECC technique is used for the image encryption process where the optimal keys of ECC are generated using MFO algorithm. Besides, blockchain technology is utilized to store the encrypted images. Then, the diagnostic process involves histogram-based segmentation, Inception with ResNet-v2-based feature extraction, and support vector machine (SVM)-based classification. The experimental performance of the presented BDL-SMDTD technique has been validated using benchmark medical images and the resultant values highlighted the improved performance of the BDL-SMDTD technique. The proposed BDL-SMDTD model accomplished maximum classification performance with sensitivity of 96.94%, specificity of 98.36%, and accuracy of 95.29%, whereas the feature extraction is performed based on ResNet-v2

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation,General Engineering,General Mathematics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3