Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

Author:

Tokar Mikhail Z.1ORCID

Affiliation:

1. Institute for Energy and Climate, Research — Plasma Physics (IEK-4), Research Center Jülich, Jülich, 52428, Germany

Abstract

By reaching the first wall of a fusion reactor, charged plasma particles, electrons and ions are recombined into neutral molecules and atoms of hydrogen isotopes. These species recycle back into the plasma volume and participate, in particular, in charge–exchange (cx) collisions with ions. As a result, hot atoms with chaotically directed velocities are generated and some of them hit the wall. Statistical Monte Carlo methods often used to model the behavior of cx atoms are too time-consuming for comprehensive parameter studies. Recently1 an alternative iteration approach to solve one-dimensional kinetic equation2 has been significantly accelerated, by a factor of 30–50, by applying a pass method to evaluate the arising integrals from functions, involving the ion velocity distribution. Here, this approach is used by solving a two-dimensional kinetic equation, describing the transport of cx atoms in the vicinity of an opening in the wall, e.g., the entrance of a duct guiding to a diagnostic installation. To assess the erosion rate and lifetime of the installation, one need to know the energy spectrum of hot cx atoms escaping from the plasma into the duct. Calculations are done for a first mirror of molybdenum under plasma conditions expected in a fusion reactor like DEMO.3,4 The results of kinetic modeling are compared with those found by using a diffusion approximation5 relevant for cx atoms if the time between cx collisions with ions is much smaller than the time till the ionization of atoms by electrons. The present more exact kinetic consideration predicts a mirror erosion rate by a factor of 2 larger than the approximate diffusion approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3