OKO-SVM: Online kernel optimization-based support vector machine for the incremental learning and classification of the sentiments in the train reviews

Author:

Thakur Rashmi K.1,Deshpande Manojkumar V.2

Affiliation:

1. MPSTME, NMIMS University, Mumbai, India

2. Prestige Institute of Engineering Management & Research, Indore, India

Abstract

Online incremental learning is one of the emerging research interests among the researchers in the recent years. The sentiment classification through the online incremental learning faces many challenges due to the limitations in the memory and the computing resources available for processing the online reviews. This work has introduced an online incremental learning algorithm for classifying the train reviews. The sentiments available in the reviews provided for the public services are necessary for improving the quality of the service. This work proposes the online kernel optimization-based support vector machine (OKO-SVM) classifier for the sentiment classification of the train reviews. This paper is the extension of the previous work kernel optimization-based support vector machine (KO-SVM). The OKO-SVM classifier uses the proposed fuzzy bound for modifying the weight for each incoming review database for the particular time duration. The simulation uses the standard train review and the movie review database for the classification. From the simulation results, it is evident that the proposed model has achieved a better performance with the values of 84.42%, 93.86%, and 74.56% regarding the accuracy, sensitivity, and specificity while classifying the train review database.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vocal/Music Classification using Incremental Learning Approach;2022 International Conference on Signal and Information Processing (IConSIP);2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3