DYNAMIC LOAD IDENTIFICATION FOR UNCERTAIN STRUCTURES BASED ON INTERVAL ANALYSIS AND REGULARIZATION METHOD

Author:

LIU J.1,HAN X.1,JIANG C.1,NING H. M.1,BAI Y. C.1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha City 410082, P.R. China

Abstract

In this paper, an inverse method that combines the interval analysis with regularization is presented to stably identify the bounds of dynamic load acting on the uncertain structures. The uncertain parameters of the structure are treated as intervals and hence only their bounds are needed. Using the first-order Taylor expansion, the identified load can be approximated as a linear function of the uncertain parameters. In this function, it is assumed that the load at the midpoint of the uncertain parameters can be expressed as a series of impulse kernels. The finite element method (FEM) is used to obtain the response function of the impulse kernel and the response to the midpoint load is expressed in a form of convolution. In order to deal with the ill-posedness arising from the deconvolution, two regularization methods are adopted to provide the numerically efficient and stable solution of the desired unknown midpoint load. Then, a sensitivity analysis is suggested to calculate the first derivative of the identified load with respect to each uncertain parameter. Applying the interval extension in interval mathematics, the lower and upper bounds of identified load caused by the uncertainty can be finally determined. Numerical simulation demonstrates that the present method is effective and robust to stably determine the range of the load on the uncertain structures from the noisy measured response in time domain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3