Affiliation:
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha City 410082, P.R. China
Abstract
In this paper, an inverse method that combines the interval analysis with regularization is presented to stably identify the bounds of dynamic load acting on the uncertain structures. The uncertain parameters of the structure are treated as intervals and hence only their bounds are needed. Using the first-order Taylor expansion, the identified load can be approximated as a linear function of the uncertain parameters. In this function, it is assumed that the load at the midpoint of the uncertain parameters can be expressed as a series of impulse kernels. The finite element method (FEM) is used to obtain the response function of the impulse kernel and the response to the midpoint load is expressed in a form of convolution. In order to deal with the ill-posedness arising from the deconvolution, two regularization methods are adopted to provide the numerically efficient and stable solution of the desired unknown midpoint load. Then, a sensitivity analysis is suggested to calculate the first derivative of the identified load with respect to each uncertain parameter. Applying the interval extension in interval mathematics, the lower and upper bounds of identified load caused by the uncertainty can be finally determined. Numerical simulation demonstrates that the present method is effective and robust to stably determine the range of the load on the uncertain structures from the noisy measured response in time domain.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献