A Simple Scheme to Solve Saint-Venant Equations by Finite Element Method

Author:

Zarmehi Fatemeh1,Tavakoli Ali1

Affiliation:

1. Mathematics Department, Vali-e-Asr University of Rafsanjan, P. O. Box 518, Iran

Abstract

Solving the Saint-Venant equations by finite element method (FEM) takes a long CPU time (even for a short time). Hence, we can apply the fast numerical methods such as finite difference method. But, these methods are not stable most of the time and moreover verification of the stability for these methods is very hard. The main reason is that the construction of the system needs the (analytical or numerical) integration of many (complicated) nonlinear functions in each time step. In this paper, we present a methodology to solution of these equations. The proposed method stabilizes the Saint-Venant equations, avoiding oscillations around discontinuities. In comparison with current methodology for construction of the system discretized by FEM, our methodology takes much shorter time. In addition, we split the discretized system into two simple systems so that each of them can be solved through direct methods. To demonstrate the performance of the method, some examples are presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3