SOLUTION OF CONTACT PROBLEM FOR AN ARC CRACK USING HYPERSINGULAR INTEGRAL EQUATION

Author:

CHEN Y. Z.1,LIN X. Y.1,WANG Z. X.1,NIK LONG N. M. A.2

Affiliation:

1. Division of Engineering Mechanics, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China

2. Mathematics Department, Faculty of Science, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

This paper investigates the contact problem for an arc crack, for example, under a remote compression. A hypersingular integral equation (HSIE) for curved cracks in plane elasticity is suggested. It is found that the direct usage of HSIE cannot solve the mentioned contact problem. For the contact problem, one must take necessary modifications for solving the HSIE. The main modified points are as follows. First, one should assume some portion along the crack under contact. The margin or the end of the contacted portion is determined by the vanishing normal contact stress at the margin point. In addition, it is found that a suggested quadrature rule in conjunction with the curve length method provides a very effective way to solve the HSIE. Finally, several numerical examples are given.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revisiting classical concepts of Linear Elastic Fracture Mechanics - Part I: The closing ‘mathematical’ crack in an infinite plate and the respective Stress Intensity Factors;Frattura ed Integrità Strutturale;2023-09-27

2. Legendre multi-wavelets collocation method for numerical solution of linear and nonlinear integral equations;Alexandria Engineering Journal;2020-12

3. Numerical Solution of Diffusion and Reaction–Diffusion Partial Integro-Differential Equations;International Journal of Computational Methods;2018-09

4. Cover Picture: ZAMM 11/2017;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2017-11

5. Stress intensity factor for multiple inclined or curved cracks problem in circular positions in plane elasticity;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2017-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3