Stability of a Time Delayed SIR Epidemic Model Along with Nonlinear Incidence Rate and Holling Type-II Treatment Rate

Author:

Kumar Abhishek1,Nilam 1

Affiliation:

1. Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India

Abstract

In this paper, we present a mathematical study of a deterministic model for the transmission and control of epidemics. The incidence rate of susceptible being infected is very crucial in the spread of disease. The delay in the incidence rate is proved fatal. In the present study, we propose an SIR mathematical model with the delay in the infected population. We are taking nonlinear incidence rate for epidemics along with Holling type II treatment rate for understanding the dynamics of the epidemics. Model stability has been done by the basic reproduction number [Formula: see text]. The model is locally asymptotically stable for disease-free equilibrium [Formula: see text] when the basic reproduction number [Formula: see text] is less than one ([Formula: see text]). We investigated the stability of the model for disease-free equilibrium at [Formula: see text] equals to one using center manifold theory. We also investigated the stability for endemic equilibrium [Formula: see text] at [Formula: see text]. Further, numerical simulations are presented to exemplify the analytical studies.

Funder

Delhi Technological University

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3