Affiliation:
1. Department of Applied Mathematics, Delhi Technological University, Delhi 110042, India
Abstract
In this paper, we present a mathematical study of a deterministic model for the transmission and control of epidemics. The incidence rate of susceptible being infected is very crucial in the spread of disease. The delay in the incidence rate is proved fatal. In the present study, we propose an SIR mathematical model with the delay in the infected population. We are taking nonlinear incidence rate for epidemics along with Holling type II treatment rate for understanding the dynamics of the epidemics. Model stability has been done by the basic reproduction number [Formula: see text]. The model is locally asymptotically stable for disease-free equilibrium [Formula: see text] when the basic reproduction number [Formula: see text] is less than one ([Formula: see text]). We investigated the stability of the model for disease-free equilibrium at [Formula: see text] equals to one using center manifold theory. We also investigated the stability for endemic equilibrium [Formula: see text] at [Formula: see text]. Further, numerical simulations are presented to exemplify the analytical studies.
Funder
Delhi Technological University
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Mathematics,Computer Science (miscellaneous)
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献