A Machine Learning-Based Method for Intracoronary OCT Segmentation and Vulnerable Coronary Plaque Cap Thickness Quantification

Author:

Guo Xiaoya1,Tang Dalin12,Molony David3,Yang Chun2,Samady Habib3,Zheng Jie4,Mintz Gary S.5,Maehara Akiko5,Wang Liang2,Pei Xuan6,Li Zhi-Yong6,Ma Genshan7,Giddens Don P.38

Affiliation:

1. Department of Mathematics, Southeast University, Nanjing 210096, P. R. China

2. Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA

3. Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA

4. Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA

5. The Cardiovascular Research Foundation, Columbia University, New York, NY 10022, USA

6. School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, P. R. China

7. Department of Cardiology, Zhongda Hospital, Southeast University Nanjing 210009, P. R. China

8. The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Accurate cap thickness quantification is of fundamental importance for vulnerable plaque detection in cardiovascular research. A segmentation method for intracoronary optical coherence tomography (OCT) image based on least squares support vector machine (LS-SVM) was performed to characterize plaque component borders and quantify fibrous cap thickness. Manual segmentation of OCT images were performed by experts based on combination of virtual-histology intravascular ultrasound (VH-IVUS) and OCT images and used as gold standard. The segmentation methods based on LS-SVM provided accurate plaque cap thickness (an 8.6% error by LS-SVM vs. 71% error by IVUS50) serving as solid basis for plaque modeling and assessment.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3