A COMPARISON BETWEEN THE NMM AND THE XFEM IN DISCONTINUITY MODELING

Author:

AN XINMEI1,FU GUOYANG2,MA GUOWEI2

Affiliation:

1. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

2. School of Civil and Resource Engineering, University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

Abstract

Discontinuities such as voids, cracks, material interfaces, and joints widely exist in nature. Conventional finite element method (FEM) requires the finite element mesh to coincide with the discontinuities, which often complicates the meshing task. When evolution of discontinuities are necessary, remeshing is inevitable, which makes the simulation tedious and time-consuming. In order to overcome such inconveniences, the extended finite element method (XFEM) and the generalized finite element method (GFEM) were developed by incorporating special functions into the standard finite element approximation space based on partition of unity. The finite element mesh is allowed to be totally independent of the discontinuities and remeshing is totally avoided for discontinuity evolution. The numerical manifold method (NMM) can also be viewed as an extension or generalization to the conventional FEM. Different from the XFEM/GFEM, the approximation in the NMM is based on covers. The NMM models discontinuities by its dual cover system. In this paper, a detailed comparison between the NMM and the XFEM in discontinuity modeling is presented. Their advantages and disadvantages are pointed out. How the dual cover system in the NMM favors the complex crack modeling is emphasized. Potential extensions to the XFEM and the NMM are suggested.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3