Improving Monte-Carlo and Molecular Dynamics Simulation Outcomes Using Temperature-Dependent Interaction Parameters: The Case of Pure LJ Fluid

Author:

Al-Matar Ali Kh.12,Tobgy Ahmed H.1,Suleiman Ibrahim A.1,Al-Faiad Majdi A.1

Affiliation:

1. Chemical Engineering Department, Faculty of Engineering and Technology, University of Jordan, Amman, Jordan

2. Chemical Engineering Department, College of Engineering Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

The main proposition of this work is that introducing temperature-dependent interaction parameters (TDIP) instead of using temperature-independent interaction parameters (TIIP) may lead to improvement in the prediction of phase equilibrium properties such as vapor liquid equilibria, and transport properties e.g., self-diffusivity. Published second virial coefficient data was used to fit a simple two parameter temperature-dependent model for the collision diameter and well depth. This fitting procedure reduces the Root Mean Square Deviation (RMSD) between the experimental and predicted second virial coefficients by tenfold compared to the best TIIP and by 15 fold with the literature values. The vapor–liquid coexistence curve for argon was simulated in the NVT Gibbs ensemble in the temperature range: 110–148 K. The critical temperature and density were determined using the Ising-scaling model. The TDIP simulations produce, in general, a more accurate phase diagram compared to the diagram generated using TIIP. RMSD is reduced by 42.1% using TDIP. Also, there was no significant difference between the results obtained using TDIP and the highly accurate and computationally demanding phase diagrams based on three body contributions implementing Axillrod–Teller correction. Self-diffusivities of atomic argon were evaluated using the mean square displacement or the Einstein method using equilibrium molecular dynamics (MD) at a pressure of 13 bars and a temperature range from 90 K up to 135 K in the isobaric, isothermal NPT ensemble. TDIP, in general, produces more accurate self-diffusivities than the values computed by TIIP simulations. RMSD is reduced by about 64% using the temperature-dependent parameters.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3