SOME NEWTON-TYPE ITERATIVE METHODS WITH AND WITHOUT MEMORY FOR SOLVING NONLINEAR EQUATIONS

Author:

WANG XIAOFENG12,ZHANG TIE1

Affiliation:

1. College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China

2. School of Mathematics and Physics, Bohai University, Jinzhou, Liaoning 121013, China

Abstract

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3