Time Effects on Settlement of Rigid Pile Composite Foundation: Simplified Models

Author:

Xu Meijuan1,Ni Pengpeng2,Mei Guoxiong1,Zhao Yanlin1

Affiliation:

1. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi Key Laboratory of Disaster Prevention and Structural Safety, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, P. R. China

2. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

The behavior of pile composite foundation is studied using the flexibility method. During the analysis, determination of the flexibility matrix (settlement) is critical. However, conventional methods of Winkler and elastic half-space foundation models are incapable of considering the time effects of soil consolidation and creep. The foundation model of Zaretsky and Tsytovich [1965] can be used to evaluate settlement for unsaturated soils, but the complexity of numerical integration over an arbitrary loading area hinders its application. In this paper, a novel scheme is proposed for numerical integration by rotating the loading surface using the equiareal transformation technique. Therefore, a simplified closed-form solution is developed to calculate time dependent settlement for foundation soils. The efficacy of the proposed technique is demonstrated using illustrative examples of an elastic half-space, a rigid raft foundation without piles, and rigid pile composite foundations with multiple piles under surface loading. Furthermore, parametric study is conducted to evaluate the sensitivity of model parameters. The permeability [Formula: see text] and Poisson’s ratio [Formula: see text] are found to be important, whereas pore pressure coefficient [Formula: see text] and degree of saturation [Formula: see text] are less significant in the calculation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Innovation Project of Guangxi Graduate Education

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Mathematics,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3