Spectral measure of empirical autocovariance matrices of high-dimensional Gaussian stationary processes

Author:

Bose Arup1,Hachem Walid2

Affiliation:

1. Statistics and Mathematics Unit, Indian Statistical Institute, Kolkata, India

2. LIGM, CNRS, Univ Gustave Eiffel, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract

Consider the empirical autocovariance matrices at given non-zero time lags, based on observations from a multivariate complex Gaussian stationary time series. The spectral analysis of these autocovariance matrices can be useful in certain statistical problems, such as those related to testing for white noise. We study the behavior of their spectral measure in the asymptotic regime where the time series dimension and the observation window length both grow to infinity, and at the same rate. Following a general framework in the field of the spectral analysis of large random non-Hermitian matrices, at first the probabilistic behavior of the small singular values of a shifted version of the autocovariance matrix is obtained. This is then used to obtain the asymptotic behavior of the empirical spectral measure of the autocovariance matrices at any lag. Matrix orthogonal polynomials on the unit circle play a crucial role in our study.

Funder

Agence Nationale de la Recherche, Labex

Agence Nationale de la Recherche

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectrum of High-Dimensional Sample Covariance and Related Matrices: A Selective Review;Indian Statistical Institute Series;2024

2. Joint convergence of sample cross-covariance matrices;Latin American Journal of Probability and Mathematical Statistics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3