THE BETA-MANOVA ENSEMBLE WITH GENERAL COVARIANCE

Author:

DUBBS ALEXANDER1,EDELMAN ALAN1

Affiliation:

1. Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

Abstract

We consider adding arbitrary covariance to the β-Jacobi random matrix model. We recall that for β = 1 the Jacobi random matrix model may be thought of as the eigenvalues, λi, of YtY(XTX + YtY)-1 where X and Y are matrices whose elements are i.i.d. standard normals. Equivalently we can take the generalized cosine singular values of (Y, X), ci, and use [Formula: see text]. When β = 1 we add covariance by considering YtY(YtY + ΩXtXΩ)-1, for a positive definite diagonal matrix Ω. Equivalently, and preferably, we consider the generalized singular value decomposition (gsvd) of (Y, XΩ). We refer to Ω = I as the Jacobi case and the general Ω case as the MANOVA case. In this paper, we provide a matrix model for the general β-MANOVA ensemble. In particular, we provide an algorithm for the numerical sampling of eigenvalues or generalized cosine singular values. The β-MANOVA algorithm uses the β-Wishart algorithm of Forrester and Dubbs–Edelman–Koev–Venkataramana as a subroutine, perhaps making β-MANOVA the first "second-order" continuous-β random matrix algorithm. Our proofs make use of a conjecture of MacDonald (proven by Baker and Forrester), a theorem of Kaneko, and many identities from Forrester's Log-Gases and Random Matrices. We supply numerical evidence that our theorems are correct.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Reference22 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonergodic extended states in the β ensemble;Physical Review E;2022-05-12

2. Eigenvalue-Based Detection of a Signal in Colored Noise: Finite and Asymptotic Analyses;IEEE Transactions on Information Theory;2020-10

3. The densities and distributions of the largest eigenvalue and the trace of a Beta–Wishart matrix;Random Matrices: Theory and Applications;2019-12-03

4. Densities of the extreme eigenvalues of Beta–MANOVA matrices;Random Matrices: Theory and Applications;2018-12-19

5. Limits for circular Jacobi beta-ensembles;Journal of Approximation Theory;2017-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3