Affiliation:
1. School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China
Abstract
We investigate the orthogonal polynomials associated with a singularly perturbed Pollaczek–Jacobi type weight [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. Based on our observation, we find that this weight includes the symmetric constraint [Formula: see text]. Our main results obtained here include two aspects: (1) Strong asymptotics: we deduce strong asymptotics of monic orthogonal polynomials with respect to the above weight function in different regions in the complex plane when the polynomial degree [Formula: see text] goes to infinity. Because of the effect of [Formula: see text] for varying [Formula: see text], the asymptotic behavior in a neighborhood of point [Formula: see text] is described in terms of the Airy function as [Formula: see text], but the Bessel function as [Formula: see text]. Due to symmetry, the similar local asymptotic behavior near the singular point [Formula: see text] can be derived. (2) Limiting eigenvalue correlation kernels: We calculate the limit of the eigenvalue correlation kernel of the corresponding unitary random matrix ensemble in the bulk of the spectrum described by the sine kernel, and at both sides of hard edge, expressed as a Painlevé III kernel. Our analysis is based on the Deift–Zhou nonlinear steepest descent method for Riemann–Hilbert problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献