Asymptotics of the determinant of the modified Bessel functions and the second Painlevé equation

Author:

Chen Yu1ORCID,Xu Shuai-Xia2ORCID,Zhao Yu-Qiu1ORCID

Affiliation:

1. Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

2. Institut Franco-Chinois de l’Energie Nucléaire, Sun Yat-sen University, Guangzhou 510275, China

Abstract

In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the [Formula: see text]-entry being the modified Bessel functions of order [Formula: see text], [Formula: see text]. When the degree [Formula: see text] is finite, we show that the Toeplitz determinant is described by the isomonodromy [Formula: see text]-function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter [Formula: see text]. The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point [Formula: see text], where the [Formula: see text]-function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3