Spectral distributions of periodic random matrix ensembles

Author:

Van Peski Roger1ORCID

Affiliation:

1. Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Abstract

Koloğlu, Kopp and Miller compute the limiting spectral distribution of a certain class of real random matrix ensembles, known as [Formula: see text]-block circulant ensembles, and discover that it is exactly equal to the eigenvalue distribution of an [Formula: see text] Gaussian unitary ensemble. We give a simpler proof that under very general conditions which subsume the cases studied by Koloğlu–Kopp–Miller, real-symmetric ensembles with periodic diagonals always have limiting spectral distribution equal to the eigenvalue distribution of a finite Hermitian ensemble with Gaussian entries which is a ‘complex version’ of a [Formula: see text] submatrix of the ensemble. We also prove an essentially algebraic relation between certain periodic finite Hermitian ensembles with Gaussian entries, and the previous result may be seen as an asymptotic version of this for real-symmetric ensembles. The proofs show that this general correspondence between periodic random matrix ensembles and finite complex Hermitian ensembles is elementary and combinatorial in nature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3