Efficient estimation of reduced-rank partial envelope model in multivariate linear regression

Author:

Zhang Jing12,Huang Zhensheng1,Xiong Yan3

Affiliation:

1. School of Science, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu, P. R. China

2. School of Mathematics and Finance, Chuzhou University, Chuzhou, 239000 Anhui, P. R. China

3. School of Mathematics and Big Data, Foshan University, Foshan, 528000 Guangdong, P. R. China

Abstract

In order to further improve the efficiency of parameter estimation and reduce the number of estimated parameters, we adopt dimension reduction ideas of partial envelope model proposed by [Su and Cook, Partial envelopes for efficient estimation in multivariate linear regression, Biometrika 98 (2011) 133–146.] to center on some predictors of special interest. Based on the research results of [Cook et al., Envelopes and reduced-rank regression, Biometrika 102 (2015) 439–456.], we combine partial envelopes with reduced-rank regression to form reduced-rank partial envelope model which can reduce dimension efficiently. This method has the potential to perform better than both. Further, we demonstrate maximum likelihood estimators for the reduced-rank partial envelope model parameters, and exhibit asymptotic distribution and theoretical properties under normality. Meanwhile, we show selections of rank and partial envelope dimension. At last, under the normal and non-normal error distributions, simulation studies are carried out to compare our proposed reduced-rank partial envelope model with the other four methods, including ordinary least squares, reduced-rank regression, partial envelope model and reduced-rank envelope model. A real data analysis is also given to support the theoretic claims. The reduced-rank partial envelope estimators have shown promising performance in extensive simulation studies and real data analysis.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3