Asymptotic freeness of unitary matrices in tensor product spaces for invariant states

Author:

Collins Benoît1,Lamarre Pierre Yves Gaudreau2,Male Camille3

Affiliation:

1. Department of Mathematics, Kyoto University, Kyoto, Japan

2. Department of Statistics, University of Chicago, Chicago, USA

3. Institut de Mathematiques de Bordeaux, Université de Bordeaux & CNRS, Talence, France

Abstract

In this paper, we pursue our study of asymptotic properties of families of random matrices that have a tensor structure. In [6], the first and second authors provided conditions under which tensor products of unitary random matrices are asymptotically free with respect to the normalized trace. Here, we extend this result by proving that asymptotic freeness of tensor products of Haar unitary matrices holds with respect to a significantly larger class of states. Our result relies on invariance under the symmetric group, and therefore on traffic probability. As a byproduct, we explore two additional generalizations: (i) we state results of freeness in a context of general sequences of representations of the unitary group — the fundamental representation being a particular case that corresponds to the classical asymptotic freeness result for Haar unitary matrices, and (ii) we consider actions of the symmetric group and the free group simultaneously and obtain a result of asymptotic freeness in this context as well.

Funder

JSPS KAKENHI

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3