Affiliation:
1. General Coordination of Institutional Organization and Information, National Polytechnic Institute, 07738 Mexico City, Mexico
Abstract
In this paper, we study the condition number of a random Toeplitz matrix. As a Toeplitz matrix is a diagonal constant matrix, its rows or columns cannot be stochastically independent. This situation does not permit us to use the classic strategies to analyze its minimum singular value when all the entries of a random matrix are stochastically independent. Using a circulant embedding as a decoupling technique, we break the stochastic dependence of the structure of the Toeplitz matrix and reduce the problem to analyze the extreme singular values of a random circulant matrix. A circulant matrix is, in fact, a particular case of a Toeplitz matrix, but with a more specific structure, where it is possible to obtain explicit formulas for its eigenvalues and also for its singular values. Among our results, we show the condition number of a non-symmetric random circulant matrix [Formula: see text] of dimension [Formula: see text] under the existence of the moment generating function of the random entries is [Formula: see text] with probability [Formula: see text] for any [Formula: see text], [Formula: see text]. Moreover, if the random entries only have the second moment, the condition number satisfies [Formula: see text] with probability [Formula: see text]. Also, we analyze the condition number of a random symmetric circulant matrix [Formula: see text]. For the condition number of a random (non-symmetric or symmetric) Toeplitz matrix [Formula: see text] we establish [Formula: see text], where [Formula: see text] is the minimum singular value of the matrix [Formula: see text]. The matrix [Formula: see text] is a random circulant matrix and [Formula: see text], where [Formula: see text] are deterministic matrices, [Formula: see text] indicates the conjugate transpose of [Formula: see text] and [Formula: see text] are random diagonal matrices. From random experiments, we conjecture that [Formula: see text] is well-conditioned if the moment generating function of the random entries of [Formula: see text] exists.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory