Random Toeplitz matrices: The condition number under high stochastic dependence

Author:

Manrique-Mirón Paulo1

Affiliation:

1. General Coordination of Institutional Organization and Information, National Polytechnic Institute, 07738 Mexico City, Mexico

Abstract

In this paper, we study the condition number of a random Toeplitz matrix. As a Toeplitz matrix is a diagonal constant matrix, its rows or columns cannot be stochastically independent. This situation does not permit us to use the classic strategies to analyze its minimum singular value when all the entries of a random matrix are stochastically independent. Using a circulant embedding as a decoupling technique, we break the stochastic dependence of the structure of the Toeplitz matrix and reduce the problem to analyze the extreme singular values of a random circulant matrix. A circulant matrix is, in fact, a particular case of a Toeplitz matrix, but with a more specific structure, where it is possible to obtain explicit formulas for its eigenvalues and also for its singular values. Among our results, we show the condition number of a non-symmetric random circulant matrix [Formula: see text] of dimension [Formula: see text] under the existence of the moment generating function of the random entries is [Formula: see text] with probability [Formula: see text] for any [Formula: see text], [Formula: see text]. Moreover, if the random entries only have the second moment, the condition number satisfies [Formula: see text] with probability [Formula: see text]. Also, we analyze the condition number of a random symmetric circulant matrix [Formula: see text]. For the condition number of a random (non-symmetric or symmetric) Toeplitz matrix [Formula: see text] we establish [Formula: see text], where [Formula: see text] is the minimum singular value of the matrix [Formula: see text]. The matrix [Formula: see text] is a random circulant matrix and [Formula: see text], where [Formula: see text] are deterministic matrices, [Formula: see text] indicates the conjugate transpose of [Formula: see text] and [Formula: see text] are random diagonal matrices. From random experiments, we conjecture that [Formula: see text] is well-conditioned if the moment generating function of the random entries of [Formula: see text] exists.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3