On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations

Author:

Dembczak-Kołodziejczyk Alicja1,Lytova Anna1ORCID

Affiliation:

1. University of Opole, 48 Oleska, 45-052 Opole, Poland

Abstract

Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see text] and [Formula: see text] are normalized and isotropic “in average”, we prove the convergence in probability of the empirical spectral distributions of [Formula: see text] and [Formula: see text] to a version of the Marchenko–Pastur law and the so-called effective medium spectral distribution, correspondingly. In particular, choosing normalized Rademacher random variables as [Formula: see text], in the modified regime one can get a shifted semicircle and semicircle laws. We also apply our results to the certain classes of matrices having block structures, which were studied in [G. M. Cicuta, J. Krausser, R. Milkus and A. Zaccone, Unifying model for random matrix theory in arbitrary space dimensions, Phys. Rev. E 97(3) (2018) 032113, MR3789138; M. Pernici and G. M. Cicuta, Proof of a conjecture on the infinite dimension limit of a unifying model for random matrix theory, J. Stat. Phys. 175(2) (2019) 384–401, MR3968860].

Funder

Narodowe Centrum Nauki

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse block-structured random matrices: universality;Journal of Physics: Complexity;2023-04-06

2. Marchenko-Pastur law for a random tensor model;Electronic Communications in Probability;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3