Affiliation:
1. School of Mathematics and Statistics, ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Melbourne, Parkville, Victoria 3010, Australia
Abstract
The spectral density for random matrix [Formula: see text] ensembles can be written in terms of the average of the absolute value of the characteristic polynomial raised to the power of [Formula: see text], which for even [Formula: see text] is a polynomial of degree [Formula: see text]. In the cases of the classical Gaussian, Laguerre, and Jacobi weights, we show that this polynomial, and moreover, the spectral density itself, can be characterized as the solution of a linear differential equation of degree [Formula: see text]. This equation, and its companion for the resolvent, are given explicitly for [Formula: see text] and [Formula: see text] for all three classical cases, and also for [Formula: see text] in the Gaussian case. Known dualities for the spectral moments relating [Formula: see text] to [Formula: see text] then imply corresponding differential equations in the case [Formula: see text], and for the Gaussian ensemble, the case [Formula: see text]. We apply the differential equations to give a systematic derivation of recurrences satisfied by the spectral moments and by the coefficients of their [Formula: see text] expansions, along with first-order differential equations for the coefficients of the [Formula: see text] expansions of the corresponding resolvents. We also present the form of the differential equations when scaled at the hard or soft edges.
Funder
Australian Research Council
Australian Government Research Training Program Scholarship
Publisher
World Scientific Pub Co Pte Lt
Subject
Discrete Mathematics and Combinatorics,Statistics, Probability and Uncertainty,Statistics and Probability,Algebra and Number Theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献