Affiliation:
1. Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract
Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional generalized variable-coefficient shallow water wave equation which can be reduced to several integrable equations, such as the Korteweg–de Vries (KdV) equation and the Calogero–Bogoyavlenskii–Schiff (CBS) equation. Bilinear forms, Bäcklund transformation, Lax pair and infinite conservation laws are derived based on the binary Bell polynomials. N-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the N-soliton interaction in the scaled space and time coordinates; (ii) positions of the solitons depend on the sign of wave numbers after each interaction; (iii) interaction of the solitons is elastic, i.e. the amplitude, velocity and shape of each soliton remain invariant after each interaction except for a phase shift.
Funder
National Natural Science Foundation of China
Open Fund of State Key Laboratory of Information Photonics and Optical Communications
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献