An electrochemical approach for bulk production of reduced graphene oxide from graphite oxide followed by thermal reduction

Author:

Singh Pankaj Kumar1ORCID,Singh Pradeep Kumar1,Sharma Kamal1

Affiliation:

1. Micro-Nano Development Research Center, Department of Mechanical Engineering, GLA University, Mathura, Uttar Pradesh, India

Abstract

A high-quality, bulk synthesis of graphene that is inexpensive, and environmentally safe is highly desired because of the broad range of applications. In comparison to the chemical vapor deposition (CVD) method, epitaxial growth on silicon carbide, etc., the electrochemical approach is thought to be the most straightforward and eco-friendly way for the cost-effective bulk production of graphene from graphite. Moreover, the thermal reduction method appears to be a particularly cost-effective way to eliminate oxygen-containing functional groups when compared to chemical reduction. The yield of graphene is also impacted by the choice of cathode low-cost, which is extremely important and played a critical role during the synthesis process. In this work, we demonstrate a green, eco-friendly, and cost-effective electrochemical method for the synthesis of reduced graphene oxide (RGO) followed by thermal reduction. To accomplish electrochemical exfoliation for the graphene synthesis, a constant DC power of 65[Formula: see text]W ([Formula: see text][Formula: see text]V and [Formula: see text][Formula: see text]amp) has been supplied within an electrolytic cell that contains 2[Formula: see text]M of sulphuric acid as an electrolytic solution. The aluminium has been utilized as a cathode in place of the platinum, carbon cathode, etc. Moreover, to prepare the electrolytic solution and for the sonication process, sterilized water has been used in place of DI (deionized water). Thereafter, previously oxidized graphite oxide has been thermally reduced at a temperature of [Formula: see text]C. The phase, crystallinity, and interatomic distance were investigated using X-Ray diffraction (XRD) analysis. X-Ray data show that the RGO crystal structure has been recovered following high-temperature annealing. The diffraction peak seems to be at [Formula: see text] with an interplaner distance of 3.48[Formula: see text]Å. The intensity of the defect, as measured by the [Formula: see text] ratio (intensity ratio), was analyzed using Raman spectra, and the result of that investigation was found to be 0.196. The findings of the Raman study unambiguously reveal that the severity of the defects is judged to be on the lower end of the spectrum. The surface texture, microstructure, and elemental analysis were performed using atomic force microscopy (AFM), Field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and EDX analysis. Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) were used to determine the number of oxygen-containing functional groups that existed in the RGO sample and their thermostability. The results of FTIR and TGA analysis clearly demonstrate that the reduction temperature has a major role in determining the proportion of oxygen that is present in the graphene. This study presents a large-scale, cost-effective, and eco-friendly graphene synthesis method for industrial applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3