METAL-INSULATOR TRANSITION OF NaxWO3 STUDIED BY ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY

Author:

RAJ SATYABRATA123,SATO TAKAFUMI2,SOUMA SEIGO1,TAKAHASHI TAKASHI12,SARMA D. D.4,MAHADEVAN PRIYA5

Affiliation:

1. WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

2. Department of Physics, Tohoku University, Sendai 980-8578, Japan

3. Department of Physics, Indian Institute of Science Education and Research, Kolkata 700 106, India

4. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

5. S. N. Bose National Centre for Basic Sciences, Sector 3, Salt Lake, Kolkata 700-098, India

Abstract

The electronic structure of sodium tungsten bronzes Na x WO 3 is investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The ARPES spectra measured in both insulating and metallic phases of Na x WO 3 reveals the origin of metal-insulator transition (MIT) in sodium tungsten bronze system. It is found that in insulating Na x WO 3 the states near the Fermi level (EF) are localized due to the strong disorder caused by the random distribution of Na + ions in WO 3 lattice. Due to the presence of disorder and long-range Coulomb interaction of conduction electrons, a soft Coulomb gap arises, where the density of states vanishes exactly at EF. In the metallic regime the states near EF are populated and the Fermi level shifts upward rigidly with increasing electron doping (x). Volume of electron-like Fermi surface (FS) at the Γ(X) point of the Brillouin zone gradually increases with increasing Na concentration due to W 5d t2g band filling. A rigid shift of the Fermi energy is found to give a qualitatively good description of the Fermi surface evolution. As we move from bulk-sensitive to more surface sensitive photon energy, we found the emergence of Fermi surfaces at X(M) and M(R) points similar to the one at the Γ(X) point in the metallic regime, suggesting that the reconstruction of surface was due to rotation/deformation of WO 6 octahedra.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3