Effect of isothermal process parameters on semi-solid microstructure of chip-based Al–Cu–Mn–Ti alloy prepared by SIMA method

Author:

Wang Ye1ORCID,Hu Maoliang1,Xu Hongyu1,Ji Zesheng1,Wen Xuefeng1,Liu Xiaodong1

Affiliation:

1. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150001, P. R. China

Abstract

A typical Al–Cu–Mn–Ti aluminum alloy chip was adopted to prepare semi-solid billets by a Strain-Induced Melt Activation (SIMA) method, and the effects of isothermal process parameters on the semi-solid microstructure evolution of the alloy were investigated in this work. The result showed that semi-solid billets with highly spheroidal and homogeneous fine grains could be prepared from chips by the SIMA method. With the increase of isothermal temperature, the finer and near-spherical grains are obtained, the grains coarsen and became ellipse at 903 K because of the coarsening mechanisms of coalescence and Ostwald ripening. The relationship of isothermal holding time and grains size followed the LSW theory well, and more spherical microstructure can be brought by prolonging the holding time until 3000 s. Thus, the optimal isothermal treatment temperature is 893 K and holding time is 3000 s, the corresponding average size and roundness of grains are 137 [Formula: see text]m and 1.108, respectively.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3