Car-following model of connected and autonomous vehicles considering both average headway and electronic throttle angle

Author:

Chen Liang1,Zhang Yun1,Li Kun1ORCID,Li Qiaoru1,Zheng Qiang1

Affiliation:

1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

The connected and automated vehicle (CAV) is regarded as an effective way to improve traffic efficiency and safety, which can utilize vehicle-to-vehicle (V2V) communication technology to obtain real-time status information from multiple preceding vehicles. In view of the car-following characteristic of CAV in a V2V communications environment, an extended car-following model AHT-FVD is proposed which takes both average headway and electronic throttle angle difference into account. The stability of this model is examined via linear stability analysis. It is found that the proposed model has a larger stability region than both the full velocity difference (FVD) model and throttle-based FVD (T-FVD) model. Namely, this AHT-FVD model can effectively stabilize traffic flow and alleviate traffic congestion in theory. Moreover, a series of numerical simulations are carried out to explore how average headway together with electronic throttle angle difference influences the stability of traffic flow. Simulation results show that increasing either the average headway weight or the electronic throttle angle difference control signal coefficients can yield higher traffic flow stability. Simulation result is highly consistent with theoretical analysis.

Funder

Hebei University of Technology

Hebei Province Science and Technology Support Program

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3