Electrical activities, excitability and multistability transitions of the hybrid neuronal model induced by electromagnetic induction and autapse

Author:

Qiao Shuai1,Gao Chenghua1ORCID,An Xinlei23,He Xingyue1,Wang Jingjing1

Affiliation:

1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China

2. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

3. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Electromagnetic induction and autapse play important roles in regulating the electric activities, excitability, and bistable structure of neurons. The firing activities and global bifurcation patterns of a four-dimensional (4D) hybrid neuron model that combines the fast dynamic variables of the Wilson model and the slow feedback variables of the Hindmarsh–Rose (HR) model and magnetic flux are investigated based on the Matcont software and numerical calculation. The effect of electrical autapse on the dynamic evolution of the system is also discussed emphatically. Upon encountering electromagnetic induction, the hybrid neuron model exhibits complex global stability, Hopf bifurcation, and saddle-node bifurcation. Intriguingly, the system presents initial sensitivity and a bistable structure consisting of quiescent and period-1 spiking near the Hopf bifurcation point. It is worth noting that the feedback type of electrical autapse, including positive and negative feedback, has completely different effects on this bistable structure. Notably, the negative feedback autapse can expand and change the bistable region, so that the system generates a new bistable structure consisting of quiescent and periodic bursting states, and its bursting activities are also promoted. Moreover, extensive numerical results show that the system generally maintains a comb-shaped chaotic structure, abundant bifurcation patterns, and multistability. It should be noted that electrical autapse feedback types and time delays do not change the regular bifurcation structures but operate a complex regulatory mechanism for the coexistence of multiple attractors. These results will provide useful insights into the neuron’s dynamics under the atmosphere of electromagnetic induction and also electrical autapse.

Funder

National Natural Science Foundation of China

Key Project of Natural Sciences Foundation of Gansu Province of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3