Electron acceleration of a surface wave propagating in wiggler-assisted plasma

Author:

Abedi-Varaki Mehdi1

Affiliation:

1. Young Researchers and Elite Club, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran

Abstract

In this paper, we study the electron acceleration by a surface plasma wave (SPW) propagating through two parallel metal sheets in the presence of wiggler magnetic field strength. The configuration of interest consists of a helical magnetostatic wiggler, an external magnetic field and two parallel metal half-spaces. Dispersion relation of SPW in the attendance of helical magnetostatic wiggler is recognized and observed as compared with that of without wiggler field. A numerical calculation in Matlab software was developed by employing the fourth-order Runge–Kutta method for studying the electron energy and electron trajectory in SPW. Numerical results depict that with increasing of [Formula: see text]-parameter [Formula: see text] is the ratio of wiggler frequency to plasma frequency), minimum modes of SPW have an increasing trend and with increase of the wiggler frequency, the normalized frequencies decreased and a gap appeared between them. Furthermore, it is seen that with increase of the [Formula: see text]-parameter, the value of the kinetic energy as compared with the absence of the wiggler magnetic field increased. In fact, the electron energy gained is higher in the presence of a helical magnetostatic wiggler as compared with the absence of wiggler field. In addition, it is observed that due to effects of the wiggler field and SPW field, the electron traverses more distance in the propagation direction of the laser pulse.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3