Affiliation:
1. State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
A terahertz metasurface perfect absorber with multi-band performance is demonstrated. The absorber is composed of a ground plane and four split-ring resonators (SRRs) with different dimensions, separated by a dielectric spacer. The numerical simulation results illustrate that the proposed absorber has four distinct absorption peaks at resonance frequencies of 4.24, 5.66, 7.22, and 8.97 THz, with absorption rates of 96.8%, 99.3%, 97.3%, and 99.9%, respectively. Moreover, the corresponding full width at half-maximum (FWHM) values are about 0.27, 0.35, 0.32, and 0.42 THz, respectively, which are much broader than those of previously reported absorbers. Besides, the calculated magnetic field distributions allow us to understand the absorption mechanism in detail. The effects of incident angle and azimuthal angle on the absorber are also investigated. The results show that the proposed absorber is partially sensitive to the incident angle, which makes this design promising for practical applications in terahertz imagers and detectors.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献