Comparative study of the electronic structure and optical properties of the Heusler alloys Co2MGa and Co2MAl (M = Fe and Ni)

Author:

Shreder E. I.1,Makhnev A. A.1,Suresh K. G.2,Kostenko M. G.3,Chernov E. D.14,Ivanov V. G.5,Lukoyanov A. V.14ORCID

Affiliation:

1. M. N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, S. Kovalevskaya St., 18, Ekaterinburg 620108, Russia

2. Department of Physics, Indian Institute of Technology, Bombay, Mumbai, India

3. Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 121205, Russia

4. Ural Federal University, Mira St., 19, Ekaterinburg 620002, Russia

5. Faculty of Physics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Abstract

The electronic structure and optical properties of the Heusler alloys Co2NiGa, Co2NiAl, Co2FeGa, and Co2FeAl are reported and compared in this work. In the Fe-based alloys, Co2FeGa and Co2FeAl, the electronic structure is found to have 100% spin polarization with the indirect energy gap in the [Formula: see text]-[Formula: see text] direction, whereas in Co2NiGa and Co2NiAl, the density of states is metallic in both spin projections with spin polarization of 55% (Co2NiGa) and 37% (Co2NiAl). Total and Co partial magnetic moments of all Heusler alloys for the optimized lattice parameters were found in a good agreement with previous calculations and experimental data. The frequency dependence of the real and imaginary parts of the complex dielectric constant for the Heusler alloys is studied in the spectrum region of 0.08–5 eV. The research results are discussed based on the performed calculations of the electronic structure. It was found that the character of variations of the spectral parameters of the alloys is typical for media with the metallic conductivity. In the IR region, the mechanism of the intraband acceleration of electrons by the light wave field dominates. The significant changes in the optical spectrum, magnetic moment, spin polarization and electronic structure were revealed in Co2MGa and Co2MAl for different M atoms which motivate further investigations of the Co-based Heusler alloys as promising materials for spintronics.

Funder

Ministry of Education and Science of the Russian Federation

National government, Europe

Bulgarian National Science Fund

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3