Study of unsteady cavitating flow around Clark-Y hydrofoil using nonlinear PANS model with near-wall correction

Author:

Liu Benqing1ORCID,Yang Wei1,Li Sien1,Chen Jie2,Huang Biao2,Huang Xianbei3

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing Engineering Research Centre of Safety, and Energy Saving Technology for Water Supply System, Beijing 100083, China

2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100083, China

3. College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

In this paper, we describe the use of a new nonlinear partially-averaged Navier–Stokes (PANS) model with near-wall correction for simulating the cavitating flow around a Clark-Y hydrofoil. For comparison, the standard [Formula: see text]–[Formula: see text] PANS model is also used. The results demonstrate that compared to [Formula: see text]–[Formula: see text] PANS and experiment, the new PANS model shows better performance for cavitation flow, including time-averaged velocity, root mean square (rms) velocity and cavity shedding processing. Through the calculation of the lift and drag coefficient at [Formula: see text] and [Formula: see text], it can be concluded that the cavitation will decrease the lift and increase the drag of the hydrofoil, resulting in a decrease of the lift-to-drag ratio. From the analysis of different terms in both the turbulent kinetic energy (TKE) and dissipation rate transport equations of the cloud cavitation, it is found that the production term and the dissipation term are dominant in the turbulent transport, and they are mainly distributed in the vapor–liquid interface and the trailing edge of the hydrofoil.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3