Effect of timeliness on the thermal properties of paraffin-based Al2O3 nanofluids

Author:

Wu Yangyang1,Wang Baichao1,Li Dong1,Liu Changyu1

Affiliation:

1. School of Architecture and Civil Engineering, Northeast Petroleum University, Fazhan Lu Street, Daqing 163318, China

Abstract

Paraffin is an excellent photo-thermal conversion phase change energy storage material, and extensively used in the thermal storage field at the medium-low temperature. However, the low thermal conductivity of paraffin restricts its application in practice. Adding nanoparticles into paraffin is one of the effective methods to improve its thermal conductivity. Nevertheless, the thermal diffusivity, specific heat and volumetric heat capacity of paraffin as well as timeliness were affected after the addition of nanoparticles. In this paper, the influences of volume fraction of Al2O3 nanoparticle and timeliness on these thermal parameters of paraffin were investigated. The results show that the thermal conductivity of paraffin-based Al2O3 nanofluids increases first and then decreases with time, and the maximum thermal conductivity is 0.34 W/[Formula: see text] for volume fraction 1% on third day. The higher volume concentration, the lower specific heat and volumetric heat capacity, all present downtrend over time, until stable in the range of 0.3 MJ/[Formula: see text] and 0.4 MJ/[Formula: see text]. The average enhancement rate of specific heat and volumetric heat capacity are concentrates on −6% to 9%, −10% to 0%, respectively. While increasing the volume concentration, the thermal diffusivity has no obvious regularity, and presents undulatory property over time.

Funder

Youth Innovative Talent Training Project in Heilongjiang Province

Postgraduate Innovation Research Project

Science and Technology Department, Heilongjiang Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3