Affiliation:
1. School of Architecture and Civil Engineering, Northeast Petroleum University, Fazhan Lu Street, Daqing 163318, China
Abstract
Paraffin is an excellent photo-thermal conversion phase change energy storage material, and extensively used in the thermal storage field at the medium-low temperature. However, the low thermal conductivity of paraffin restricts its application in practice. Adding nanoparticles into paraffin is one of the effective methods to improve its thermal conductivity. Nevertheless, the thermal diffusivity, specific heat and volumetric heat capacity of paraffin as well as timeliness were affected after the addition of nanoparticles. In this paper, the influences of volume fraction of Al2O3 nanoparticle and timeliness on these thermal parameters of paraffin were investigated. The results show that the thermal conductivity of paraffin-based Al2O3 nanofluids increases first and then decreases with time, and the maximum thermal conductivity is 0.34 W/[Formula: see text] for volume fraction 1% on third day. The higher volume concentration, the lower specific heat and volumetric heat capacity, all present downtrend over time, until stable in the range of 0.3 MJ/[Formula: see text] and 0.4 MJ/[Formula: see text]. The average enhancement rate of specific heat and volumetric heat capacity are concentrates on −6% to 9%, −10% to 0%, respectively. While increasing the volume concentration, the thermal diffusivity has no obvious regularity, and presents undulatory property over time.
Funder
Youth Innovative Talent Training Project in Heilongjiang Province
Postgraduate Innovation Research Project
Science and Technology Department, Heilongjiang Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献