CALCULATION OF THE UNSTEADY AIRLOADS ON WIND TURBINE BLADES UNDER YAWED FLOW

Author:

SI HAI-QING1,WANG TONG-GUANG2

Affiliation:

1. College of Civil Aviation and Flight, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

2. Department of Aerodynamics, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, China

Abstract

A dynamic stall model is coupled with the blade element momentum theory to calculate the cyclic variation of the aerodynamic characteristics of the wind turbine in yawed flow. In the dynamic stall model, unsteady effects under attached flow conditions are simulated by the superposition of indicial aerodynamic responses. The movement of the unsteady flow separation point is related to the static separation based on the Kirchhoff flow model via a deficiency function, in which the unsteady boundary layer response and the leading edge pressure response are taken into consideration. The induced vortex force and the associated pitching moment are represented empirically in a time-dependent manner during dynamic stall. The required input of the inflow velocity and incidence to the dynamic stall model is calculated using the improved blade element momentum theory. The calculated results are compared well with the NREL UAE Phase VI experimental data. For completeness, possible factors causing the difference between calculated and experimental results are analyzed and discussed in detail in this paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3