IMI long-range surface plasmon Bragg micro-cavity

Author:

Tong Kai1,Wang Jun1,Zhou Chunliang1,Wang Meiting2

Affiliation:

1. College of Electrical Engineering, Yanshan University, West of Hebei Avenue 438, Qinhuangdao 066004, China

2. College of Liren, Yanshan University, West of Hebei Avenue 438, Qinhuangdao 066004, China

Abstract

The defect layer is introduced to the insulator-metal-insulator (IMI) Bragg waveguide structure. The micro-cavity structure of long-range surface plasma is proposed based on the defect mode. The liquid crystal is the defect layer in the structure of Bragg. The energy band characteristics of the long-range surface plasmon Bragg micro-cavity structure are analyzed by using the finite difference time domain method. The influence of the period number and the length of the micro-cavity on the quality factor Q and the volume V of the Bragg grating are discussed. The results show that the photonic energy can be confined very well in the micro-cavity by the structure of the micro-cavity. By controlling the birefringence of liquid crystal, the resonance wavelength of the micro-cavity appears with redshift phenomenon. The tuning range is 42 nm. The tuning of the working window of the long-range surface plasmon filter is realized. The photonic energy is the strongest in the insulating layer and the metal interface. The increase of cycles number has certain limitation on the improvement of the quality factor Q of the cavity. The influence of the defect-cavity length on the resonant wavelength, the quality factor Q and the mode volume V is obvious. The performance of the micro-cavity can be improved by adjusting the number of the micro-cavity and the length of the defect-cavity, and the ratio of Q/V can reach 43,750 in the communication band. The nano micro-cavity provides a new design idea and basis for the fabrication of tunable long-range surface plasmon wave filter in this paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3