COMPARISON OF DIFFERENT DAILY STREAMFLOW SERIES IN US AND CHINA, UNDER A VIEWPOINT OF COMPLEX NETWORKS

Author:

TANG QIANG12,LIU JIE2,LIU HONGLING12

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China

2. Research Center of Nonlinear Science, Wuhan University of Science and Engineering, Wuhan, 430073, China

Abstract

The daily streamflow series of three rivers are analyzed from the view of complex networks, i.e. the Yangtze River in China, the Umpqua River and the Ocmulgee River in the United States. We construct networks from these series by using the visibility graph algorithm respectively. The degree distribution and accumulative degree distribution are investigated. We find that the degree distribution of the Umpqua River series network, the Ocumlgee River series network and the subsequence of the Yangtze River series network can be better fitted by stretched exponential distribution (SED), although the degree distribution curves of these networks in a log–log plot have a linear part. Moreover, the slope α of the linear part and parameters μ in SED have significant meaning in the research of streamflow series properties.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3