Structural design and analysis of large wind turbine blade

Author:

Bae Sung-Youl1,Kim Yun-Hae2

Affiliation:

1. Composites Convergence Team, Korea Textile Machinery Convergence Institute, #27 Sampung-ro, Gyeongsan City, Gyeongbuk 38542, Korea

2. Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea

Abstract

This paper presents a new design procedure for large wind turbine blades, which can be used in various case studies. The structural design of 2MW CFRP blade was performed using a verified 2MW GFRP blade model. The structural integrity assessment of the CFRP model demonstrated that the design criteria for tip deformation, buckling failure, and laminate failure in normal wind turbine operating conditions were met. The existing aero-elastic analysis code was not used to estimate the blade load, but the blade’s surface pressure was calculated using CFD. The conventional load analysis code necessitates the establishment of a turbine system and the input of structural characteristics with changes in the structural design specifications. However, when CFD was used to estimate the load, the turbine system was not required and the structure was evaluated against various design cases, making this a useful approach in preliminary design. This new structural design and evaluation procedure for wind blades can be used to review diverse design specifications in the initial design stage.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3