Affiliation:
1. Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
2. Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710129, China
Abstract
A new negative-index metamaterial (NIM) structure is proposed by designing the metallic holes of traditional double-fishnet (DF) structures from uniform sizes to several different sizes. Numerical results demonstrate that the new metamaterial, as an improved variant of the DF structure, achieved a multi-band negative refractive index across a wide range of visible frequencies from 470 THz to 540 THz, which covers the red, orange, yellow, and green regions of the visible spectra. Meanwhile, a low-profile nanostrctured absorber was obtained when one side of the perforated metal layer of this multi-band NIM was substituted with a continuous metal film with the same thickness. The absorber showed the high absorption of more than 95% at multiple frequencies of 511, 520, 523, 525, and 527 THz. The behavior of multi-frequency response effectively broadened the working bandwidth. Finally, the physical mechanism of the multi-band operating characteristics of NIM and absorber was analyzed with the distributions of current intensity at different resonant frequencies.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献