Affiliation:
1. Faculty of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
2. Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands
Abstract
The morphology of monatomic step edges on vicinal Si (001) surfaces is briefly reviewed. With increasing miscut angle, the Si (001) surface exhibits an interesting sequence of phase transitions. For a miscut angle smaller than about 0.03°, a hilly structure with step loops is found, whereas a phase of wavy steps coexisting with a phase of straight steps is observed in the range of 0.03°–0.1°. If the miscut angle lies in the range of 0.1° up to about 3°, two types, one much straighter than the other, of monatomic step edges develop. For even larger miscut angles, a phase of straight biatomic step edges is found. The fundamental energetic parameters, like kink formation energies, step edge energies and step-step interactions, which govern the thermodynamic behavior are determined using Scanning Tunneling Microscopy (STM) images of 0.5° misoriented Si (001). Despite the weak strength of energetic and entropic step-step interactions as compared to the interactions along the step edge, i.e. the kink formation and step edge energies, they have a profound effect on the meandering of the step edges. Both entropic and energetic step-step interactions are proportional to L−2 (where L is the average terrace length). The behavior of the step edges at temperatures above room temperature will be addressed with the aid of a high-temperature STM. The freeze-out temperature, T f , of the monatomic step edges is estimated to be higher than 600–700 K. The temperature T f is significantly above the roughening temperature, Tr, of the step edges. This means that at room temperature, the monatomic step edges on vicinal Si (001) are always rough.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献