Influence of insulation paper on the hot spot temperature of oil-immersed transformer winding

Author:

Luo Chuan1,Zhao Zhen-Gang12,Wang Yu-Yuan3,Liang Ke1ORCID,Zhang Jia-Hong12,Li Ying-Na12,Li Chuan12

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan, China

2. Yunnan Key Laboratory of Computer Technology Applications, Kunming, China

3. Yunnan Institute of Measuring and Testing Technology, Kunming, China

Abstract

The oil-immersed transformer is a crucial piece of equipment in the power system. Operating at the specified temperature is necessary to ensure the normal operation of the transformer. The insulation paper on the winding surface has a significant impact on the actual temperature of the transformers, which is often overlooked by researchers. The one-dimensional steady-state heat conduction model of the transformer is established by analyzing the heat diffusion process of winding to transformer oil. Atomic force microscope was used to observe the microsurface structure of insulation paper and copper. According to the experiment, the heat transfer resistance in the series process of heat transfer at [Formula: see text]C is 0.0138 m2 K/W. Space thermal circuit model of transformer is established by thermoelectricity analogy method, and the simulation circuit is optimized according to the boundary conditions set up in the actual environment. The results show that the error of the hot spot temperature is closer to the measured temperature and decreases by 2.5% when considering the thermal resistance of insulation paper.

Funder

National Natural Science Foundation of China

Applied Basic Research Project of Yunnan province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3